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Abstract 

Background: Breast cancer screening is currently predominantly based on mammography, tainted with the occur‑
rence of both false positivity and false negativity, urging for innovative strategies, as effective detection of early‑stage 
breast cancer bears the potential to reduce mortality. Here we report the results of a prospective pilot study on breast 
cancer detection using blood plasma analyzed by Fourier‑transform infrared (FTIR) spectroscopy – a rapid, cost‑effec‑
tive technique with minimal sample volume requirements and potential to aid biomedical diagnostics. FTIR has the 
capacity to probe health phenotypes via the investigation of the full repertoire of molecular species within a sample 
at once, within a single measurement in a high‑throughput manner. In this study, we take advantage of cross‑molecu‑
lar fingerprinting to probe for breast cancer detection.

Methods: We compare two groups: 26 patients diagnosed with breast cancer to a same‑sized group of age‑matched 
healthy, asymptomatic female participants. Training with support‑vector machines (SVM), we derive classification 
models that we test in a repeated 10‑fold cross‑validation over 10 times. In addition, we investigate spectral informa‑
tion responsible for BC identification using statistical significance testing.

Results: Our models to detect breast cancer achieve an average overall performance of 0.79 in terms of area under 
the curve (AUC) of the receiver operating characteristic (ROC). In addition, we uncover a relationship between the 
effect size of the measured infrared fingerprints and the tumor progression.

Conclusion: This pilot study provides the foundation for further extending and evaluating blood‑based infrared 
probing approach as a possible cross‑molecular fingerprinting modality to tackle breast cancer detection and thus 
possibly contribute to the future of cancer screening.
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Background
Breast cancer (BC) represents the most frequent can-
cer in women with a global incidence above 2 million, 
and an annual mortality above 600,000 patients in 2018 
[1, 2]. The cure rate remains correlated with the stage at 
diagnosis; therefore, early detection and screening pro-
grams are crucial [3–6]. Often, BC screening is based 
upon radiologic approaches, mostly mammography [4]. 
These screening modalities, predominantly applied in 
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developed countries, are associated with a significant 
reduction in mortality (19% overall reduction of the rela-
tive risk [1]). However, major limitations and debatable 
cost-effectiveness of these approaches persist [4, 6]. Due 
to the limited sensitivity and specificity of current medi-
cal diagnostics, cancer can either be overlooked (false 
negatives) or falsely detected (false positives), leading to 
either delayed interventions or unnecessary, potentially 
harmful investigations or psychological stress [7]. Also, 
BC screening in certain regions of the world remains 
rudimentary despite grim global projections suggesting a 
doubling of BC cases within the coming 20 years, mostly 
in these countries [1].

This concerning situation calls for additional strate-
gies for BC screening, as detection of early-stage BC 
bears potential to significantly reduce mortality. Hence, 
there is a high need for complementing current medical 
diagnostics with efficient, non-invasive or minimally-
invasive methods that could possibly lead to new easily 
implementable high-throughput screening and detection 
approaches, prior to tissue-biopsy-based diagnostics and 
molecular profiling [8].

Liquid biopsies have attracted interest over the past 
decade as a non-invasive approach for disease detec-
tion, screening and cancer monitoring [9]. Molecular 
analyses of human blood derivatives, such as plasma or 
serum, provide systemic molecular information, and ena-
ble novel routes of diagnostics [8, 10]. So far, most liquid 
biopsies predominantly rely on the analysis of a few pre-
selected analytes and biomarkers. Although the emer-
gence of highly sensitive and molecule-specific methods 
in the fields of proteomics [11–13], metabolomics [14, 
15], and genomics [16–18] has led to the discovery of 
thousands of different biomarker candidates, only a 
few of them have been validated and transferred to the 
clinic so far [19]. Moreover, given the complexity of the 
disease as well as its etiology, increasing the number of 
analytical methods for cancer detection, such as in multi-
omics, could potentially lead to higher detection rates at 
early stage. However, practically, this will lead to unfea-
sibly high costs for broad clinical use. It is thus evident 
that methods that have the capacity to capture infor-
mation across the entire molecular landscape would be 
advantageous.

Infrared molecular spectroscopy may be very benefi-
cial here − it detects signals from all types of molecules 
in a sample in a single time- and cost-effective measure-
ment in a label-free manner [20, 21]. When applied to 
blood plasma (or serum) samples, infrared spectroscopy 
delivers infrared molecular fingerprints (IMFs) reflect-
ing the chemical composition of a sample, i.e. the per-
son’s molecular blood phenotype [22, 23]. Even though 
the IMF of molecularly highly complex blood plasma 

can only partially be traced back to its molecular origin 
[24], it may be sensitive and specific to the health state 
of an individual. In a recent longitudinal study, we have 
shown that defined workflows to collect, store, process 
and measure human liquid biopsies lead to reproducible 
IMFs in healthy, non-symptomatic individuals that are 
stable over clinically relevant time scales [22, 23]. Numer-
ous studies have shown the potential of blood-based 
IMFs for the detection of breast cancer [25–28]. Despite 
these promising initial results, the majority of these stud-
ies had a high risk of bias due to patient selection [29]. In 
fact, it was shown that IMFs are susceptible to external 
confounding factors, such as those related to sample han-
dling and data collection, as well as to inherent biological 
variations (e.g. age, body-mass index) that can however 
affect cancer detection [30]. Since many cancer-related 
therapies may leave footprints in the chemical compo-
sition of peripheral blood, it is essential to evaluate the 
extent of infrared fingerprint differences at the time when 
cancer patients have only been diagnosed with malig-
nancy, prior to any cancer-related therapy. This has not 
been assessed previously, and the estimation of a blood-
based infrared fingerprinting approach as a new BC 
screening modality was not evaluated. In this work, we 
measured intact blood plasma samples, with FTIR trans-
mission spectroscopy directly in liquid form, prior to any 
cancer-related therapy, along with non-symptomatic ref-
erence individuals, which have been carefully matched 
to BC cases. By applying support vector machine (SVM) 
algorithms to train models for binary classification, we 
obtained a detection efficiency of about 0.79 (area un- 
der the receiver operating characteristic (ROC) curve, 
AUC). The present study provides a first estimation of 
feasibility to directly probe liquid blood plasma for min-
imally-invasive BC detection, an approach that is easily 
implementable and could be extended to high-through-
put BC screening applications.

Methods
Study population and sample collection
Presented results are based on a prospective, single 
center, observational clinical study. The aim of the study 
was to assess whether the combination of infrared spec- 
troscopy of liquid biopsies (blood plasma) with machine 
learning infrared spectral analyses has any capacity to 
detect breast cancer (BC). For this purpose, a cohort 
of female patients diagnosed with BC at the Oncology 
Centre, King Saud Univer- sity Medical City (KSUMC), 
Riyadh, Saudi Arabia, was compared with a cohort of 
women without BC, reference individuals. Inclusion 
criteria for participation in the study were as follows: 
Asymptomatic reference individuals were adult females 
participating in organized or voluntary BC screening, 
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assessed with mammography and (if necessary) breast 
ultrasound and/or magnetic resonance imaging (MRI). 
Patients with BC were included after confirmation of 
pathological diagnosis of invasive breast cancer and prior 
to any therapeutic intervention for breast cancer. Sub-
jects included in the trial were identified by a trial-spe-
cific code, guaranteeing their anonymity.

For the purpose of the study up to 19,6 ml of venous 
blood was collected per enrolled subject. The tubes 
were centrifuged for 10 min at 7000 g at a tempera-
ture of 4 °C and the supernatants of blood plasma were 
then aliquoted into 1.5 ml tubes (1 ml plasma each) and 
stored at 80 °C. These procedures were carried out at 
the KSUMC. The 8 aliquots of each sample were num-
bered anonymously. The correspondence list between 
the subject number and the aliquot number were main-
tained by the clinical research associate (CRA) coordi-
nator at KSUMC. Samples were processed using same 
standard operating procedures and shipped from the 
KSUMC to measurement laboratories at the LMU on 
dry ice. They have all been processed simultaneously, 
and have all undergone the same number of freeze-
thaw cycles. Once all the samples have been collected 
and stored (from all individuals involved), these have 
been all defrosted and measured as liquids within the 
same measurement campaign along the same proce-
dure. Standardization of procedures and workflows 
applied assured for minimalization of possible noise due 
to sample preparation as well as facilitated sufficient 
reproducibility.

The BC patient group (n = 26) consisted of patients 
diagnosed at KSUMC with the following characteris-
tics: mean age: 49 years (30-62), previous pregnancies: 
17 patients (65.4%), pre/peri-menopausal: 11 patients 
(42.3%), operable non-metastatic BC (stage IA-IIIA): 16 
patients (61.5%), invasive ductal carcinoma: 24 patients 
(92.3%), estrogen receptors positive: 14 patients (53.8%) 
and HER2 positive: 17 patients (65.4%). It is important to 
note that patients are regularly referred to KSUMC from 
secondary hospitals where cancer medications are not 
readily available (e.g. anti-HER2 monoclonal antibod-
ies). Therefore, the breast cancer accrual at KSUMC does 
not reflect the usual split between breast cancer molecu-
lar subtypes and thus leads to, in particular, an excess of 
HER2-positive molecular subtypes.

Achieving covariate balance between cases and con-
trols is a standard procedure in observational studies 
for minimizing the effect of confounding factors and 
limiting the bias throughout all derived results. In this 
work, we seek balance in terms of age and BMI. This is 
achieved by pairwise matching. Out of the 67 samples 
of the initial control group (collected within BC screen-
ing programme), given our criteria only 26 individuals 

of these were selected for inclusion into a control 
group that is in covariate balance with the collected BC 
cases. Table 1 shows the characteristics of the balanced 
cohort, used for further analysis. In addition, a detailed 
anonymized file (metafile.xlsx) that lists all available 
information of the recruited individuals (28 potential 
cases and 67 potential controls, before matching) is 
provided along with the manuscript.

Spectroscopic analysis
The spectroscopic measurements were performed in 
liquid phase with an automated FTIR device (MIRA-
Analyzer, micro-biolytics GmbH) with a flow-through 
transmission cuvette (CaF2 with 8 μm path length). The 
spectra were acquired with a resolution of 4  cm− 1 in a 
spectral range between 950  cm− 1 and 3050  cm− 1. A 
water reference spectrum was recorded after each sam-
ple measurement to reconstruct the IR absorption spec-
tra. To track potential experimental errors throughout 
the entire experiment [31], a measurement of pooled 
human plasma (BioWest, Nuailĺe, France) was per-
formed after every 5 samples. Negative values of absorb-
ance, which occurs because the liquid sample contains 
less water than the reference (pure water), was corrected 
for by a previously described approach [22]. It is known 
from measurements of dried plasma that there is no 
significant absorption in the wavenumber region 2000-
2300  cm− 1, resulting in a flat absorption baseline. This 
is also confirmed to approximately hold for the case of 
liquid plasma. We used this fact as a criterion for adding 
to each spectrum a previously measured water absorp-
tion spectrum to account for the missing water in the 
sample measurement and minimize the average slope 
in this region in order to obtain a flat baseline. All spec-
tra were truncated to 1000-3000  cm− 1 and removed the 
entire silent region (1800-2800  cm− 1). Finally, to correct 
for experimental (instrumental/measurement) variations 
that can affect the overall absorbance of a fingerprint, all 
spectra were normalized as vectors, using Euclidean (L2) 
norm. Panel (a) of Fig. 1 shows the distributions of meas-
ured spectra (after water correction) of the BC cases and 
their associated controls. The infrared spectral pre-pro-
cessing was performed similarly to a previous work [22].

Table 1 Characteristics of the balanced cohort

Covariates BC cases (n = 26) References 
(n = 26)

Age in years (mean ± std) 49 ± 9 44 ± 7

BMI in kg/m2 (mean ± std) 29 ± 6 27 ± 6

Gender (% female) 100 100
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Data analysis
To derive classification models, we used Scikit-Learn (v. 
0.23.2), an open-source machine-learning framework in 
Python (v.3.7.6). We trained binary-classification mod-
els using linear SVM. Performance evaluation was car-
ried out using repeated stratified 10-fold cross-validation 
and its visualization using the notion of the ROC curve. 
The results of the cross validation are reported in terms 
of descriptive statistics: the mean value of the resulting 
AUC distribution and its standard deviation. For sta-
tistically comparing two groups of spectra (i.e. cases, 
references), we followed three approaches. First, we cal-
culated the “differential fingerprint” (differential infrared 
spectrum), defined as the difference between the mean 
absorbance per wavenumber of the cases a contrasted 
against the standard deviation of the reference group 
for obtaining a visual understanding of which wavenum-
bers are potentially useful for distinguishing/classify-
ing the two populations. Such a graph serves as a visual 
representation of what is known as the “effect size” [32], 
which can be obtained by standardizing the differential 
fingerprint and has an evident relation to the AUC per 
wavenumber. Secondly, we performed t-test (testing the 
hypothesis that two populations have equal means) for 
extracting two-tailed p-values per wavenumber. As a last, 
third step, we make use of the Mann–Whitney U test 
(also known as Wilcoxon rank-sum test) for extracting 
the U statistic and calculating the AUC per wavenumber 
by the relation AUC  = U/(n1 × n2), where n1 and n2 are 
the sizes of the two groups.

Results
Infrared molecular fingerprinting for classification 
of breast cancer
To evaluate whether IMF probing of liquid plasma 
has any capacity to detect BC, we performed binary 

classification for distinction between the BC patients and 
the matched asymptomatic reference individuals (Table 1 
and Fig.  1a). The detection efficiencies achieved on the 
test sets correspond to an AUC value of 0.79 for normal-
ized FTIR spectra. A higher AUC value of 0.81 could be 
achieved using non-normalized spectra (Fig. 1b). Despite 
the higher AUC obtained for non- normalized spectra, 
we consider the analysis of normalized data to be more 
reliable. Vector normalization reduces measurement 
uncertainty which can be a major factor of bias, espe-
cially in cases of small sample sizes. Overall, these results 
deliver the first evidence that the molecular differences 
between reference individuals and matched therapy-
naive BC patient females can be detected with infrared 
fingerprinting of fluid blood plasma.

Infrared spectral probing of breast cancer
In order to understand infrared spectral information 
responsible for BC identification, we have evaluated the 
infrared spectral signatures that are relevant for distin-
guishing breast cancer cases from the reference, control 
individuals. For this purpose, we evaluated the differen-
tial fingerprints that we defined as the difference between 
the mean IMF of the case cohort and that of the refer-
ence cohort (Fig.  2a). This quantity, when compared to 
the standard deviation of the reference group (shaded 
area in Fig.  2a), reveals the locations along the spec-
trum for which the difference between the means of the 
two groups is larger than the sample standard deviation. 
These differences become even more apparent in Fig. 2b, 
which depicts the effect size, defined as the differential 
fingerprint divided by the standard deviation of the ref-
erence group. We reveal that at specific spectral loca-
tions, the effect size exceeds the barrier of one standard 
deviation, indicating potentially significant differences 
between the sample means of the two distributions.

Fig. 1 Infrared spectra and classification. a Distributions of measured spectra (after water correction) for cases and controls. Solid lines indicate the 
means of all measurements in each group and shaded areas depict the corresponding standard deviations. b Average ROC curves extracted from a 
repeated 10‑fold cross‑validation over 10 times for binary classification using linear SVM
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Fig. 2 Spectral features. a Mean absorbance difference per wavenumber between cases and references (differential fingerprint) b Effect size per 
wavenumber. This quantity is known as the Cohen’s d in signal detection theory and corresponds to the standardized difference between the mean 
absorbance of the cases and references. The dashed line indicates effect size of one standard deviation. c P‑values per wavenumber, by performing 
local two‑sided t‑tests. d ROC AUC extracted by the Mann‑Whitney U‑test. The dashed line corresponds to the AUC value of the trained SVM model. 
The shaded rectangular areas, in all panels, indicate spectral regions where highly‑significant differences have been identified
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To evaluate the statistical significance of the differences 
detected in latter analysis when comparing two groups of 
data, we additionally determined the p-value per wave-
number by performing two-sided t-tests. Importantly, we 
find that p-values of highest significance, as low as  10− 4, 
are observed in the spectral regions that directly corre-
spond to large effect size (Fig. 2c). Moreover, to further 
examine the comparison, we calculated the AUC per 
wavenumber using the U statistic of a Mann-Whitney U 
test (as described in the Methods section). We observe 
that the AUC per wavenumber follows a similar pattern 
as the effect size (Fig. 2d). Interestingly, for the wavenum-
bers with the lowest p-values and the most significant 
differences, the single-feature AUC reaches (and in some 
cases exceeds) the one obtained from the application of 
the SVM model trained on the entire spectrum (dashed 
line in Fig. 2d).

The results we provide are the first indication that the 
presented approach is feasible for the purpose of BC 
detection and that the predictive power of machine learn-
ing can be further leveraged in future analyses requiring 
larger sample sets. Our presented feasibility evaluation is 
instrumental for the establishment of a lower bound of 
the AUC and motivates the collection of larger data and 
sample sets which shall increase the prediction perfor-
mance and capacity of the approach.

Efficiency of breast cancer detection at different stages 
of malignancy
Cancer detection is challenged by the enormous bio-
logical and clinical complexity of cancer, and detection 
is further complicated by the significant intra-tumor het-
erogeneity as well as by the impact of the tumour micro-
environment [33]. To evaluate whether the blood-based 
IMFs are sufficiently sensitive to detect tumors at differ-
ent stages of progression, we first investigated whether 
the IMF characteristics depend on the stage of the 
tumor, characterized in terms of clinical TNM (tumor 
node metastasis) staging [34]. For this purpose, we split 
the BC cases into two groups and compared them sepa-
rately with the non-symptomatic, reference individuals. 
The first group corresponds to the non-metastatic (M0) 
patients (stages I, II, III) and the second group to meta-
static (M1) patients at tumor stage IV. The characteristics 
of the two groups are shown in Table 2.

Panels (a) and (b) in Fig.  3 depict the differential fin-
gerprints, and the effect size per wavenumber and the 
area enclosed by the differential fingerprint, for each 
case group compared separately to the controls. P-val-
ues lower than  10− 2 are observed in the spectral regions 
that correspond to large effect size (3 c). Altogether, we 
observe that the differences between cases and references 

are much more pronounced across the entire shown 
spectral range for the metastatic cases with stage IV 
tumours.

Discussion
This study provides the first indication that the molecu-
lar differences of blood plasma between reference indi-
viduals and matched therapy-naive breast cancer females 
have the potential to be detected with infrared finger-
printing of crude, native liquid plasma. Although pre-
vious studies on BC detection have yielded fairly high 
classification efficiencies [28], they have used dried sera 
samples, which is known for its limitations.

As a novelty of the approach, here we showed that sim-
ilar efficiencies can be achieved using measurements of 
liquid plasma directly. This is advantageous, especially as 
native plasma sample measurements are more reproduc-
ible, require only minimal sample processing and are thus 
more time efficient, while not leading to known artifacts 
such as the so called “coffee-ring effect” [35].

This work provides an assessment of the feasibility 
of infrared molecular probing for breast cancer detec-
tion by implementing robust matching that eliminates 
age and BMI as possible confounding factors. Although 
the matching excluded a lot of collected data, it is set 
such that it provides unambiguous assessment of the 
suitability of the approach. Albeit being very promising, 
the results of this study need to be further extended and 
evaluated in larger populations, as we could not involve 
many of the collected samples into our final investiga-
tion, and furthermore, samples from multiple clinical 
sites need to be further investigated. The findings of 
this study indicate that the predictive power of machine 
learning can be further leveraged in future analyses 
requiring larger sample sets. Our presented feasibil-
ity evaluation is instrumental for the establishment of a 
lower bound of the AUC and motivates the collection 
of larger data and sample sets which shall increase the 
prediction performance and capacity of the approach. 
Importantly, given the ease and stability of FTIR oper-
ational workflows to probe bulk fluid plasma, the 
approach presented here is robust and reproducible [22] 
and shall be extendable to larger cohorts in a straightfor-
ward way to any given population.

Table 2 Breakdown of cases in terms of cancer staging

Covariates M0 cases (n = 16) M1 cases (n = 10)

Age in years (mean ± std) 48 ± 10 50 ± 7

BMI in kg/m2 (mean ± std) 29 ± 6 29 ± 6

Gender (% female) 100 100
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Given that this clinical study has been performed on 
a population enrolling women living in Saudi Arabia, it 
will be important to evaluate whether blood-based infra-
red fingerprinting - as a new phenotyping modality - is 

in position to detect breast-cancer-specific signals inde-
pendent of different genetic backgrounds and lifestyles. 
In particular, it will be essential to investigate whether 
the presented approach could possibly contribute to 

Fig. 3 Tumor staging. a Mean absorbance difference per wavenumber (differential fingerprint) between cases and references, for metastatic and 
non‑metastatic patients. The inset shows the relative sizes of the area enclosed by the two differential fingerprints. b Effect size per wavenumber, for 
metastatic and non‑metastatic patients. The dashed line indicates effect size of one standard deviation. c P‑values per wavenumber, by performing 
local two‑sided t‑tests
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lowering the rate of false positive outcomes from current 
screening programs, to possibly provide an additional 
new approach to be combined with mammography.

Overall, we find a consistent pattern of infrared spec-
tral changes encoded in the IMFs which is more pro-
nounced in the case of more progressed BC stages (either 
larger tumour volume, or metastatic spread). Although 
performed within a limited study setting, these findings 
suggest that the information retrieved from the meas-
ured differences between the IMFs of BC cases and refer-
ences is connected to cancer-related molecular changes. 
These changes may be due to larger tumour load leaving 
a more extensive footprint on the composition of periph-
eral blood, or to the fact that tumour progression could 
have caused a higher systemic response, or to a combina-
tion of both.

Conclusions
This is a pilot study applying infrared spectroscopy of liq-
uid blood plasma in combination with machine learning 
for the detection of cancer, showcased on the example of 
BC. This approach to BC detection, using liquid biopsies, 
enabled us to differentiate between patients with BC and 
non-symptomatic reference individuals with an AUC of 
0.79, importantly, prior to any cancer-related therapy. In 
addition, statistical testing shows that the informative 
signals, captured by the IMFs, are related to the progres-
sion of the disease. This pilot study has been performed 
on a limited cohort with specific characteristics and thus 
further studies for validating the results on indepen-
dently-collected samples are necessary. A large-scale vali-
dation study is in progress, and additional studies on the 
detection of several other tumour types are on the way. 
If proven for its feasibility, given the ease of technical 
implementation along with the possibility to be extended 
to high-throughput populational level, this approach pos-
sesses the capability to address currently unmet needs in 
oncology, and has a potential to contribute to the future 
of precision medicine. Given the time- and cost-efficiency 
of the approach, we envisage it to be possibly applied in 
the initial phase of primary disease diagnostics. The main 
objective may not be to isolate new biomarker candidate 
molecules, but to efficiently probe with minimally-inva-
sive liquid biopsies in the first instance, before individuals 
proceed to further diagnostic approaches (based on gold-
standard diagnosis by tissue biopsy/radiology).
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